
    dY                        d dl mZ dZdZg ZeD ]:Z	  ee           # e$ r$Ze	                    e de            Y dZ[3dZ[ww xY wer! edd
                    e          z             [[[d dlmZ 	 d d	lmZmZmZ [[[n$# e$ rZej        Z ed
e d          edZ[ww xY wd dlmZmZmZmZmZmZ d dlZ d dl!m"Z"m#Z#m$Z$m%Z%m&Z&m'Z'm(Z(m)Z)m*Z*m+Z+m,Z,m-Z-m.Z.m/Z/m0Z0m1Z1m2Z2m3Z3m4Z4m5Z5m6Z6m7Z7m8Z8m9Z9m:Z:m;Z;m<Z<m=Z=m>Z>m?Z?m@Z@mAZAmBZBmCZCmDZDmEZEmFZFmGZGmHZHmIZImJZJmKZKmLZLmMZMmNZNmOZOmPZPmQZQmRZRmSZSmTZTmUZUmVZVmWZWmXZXmYZY d dlZm[Z[ d dl\m]Z] d dl^m_Z_ d dl`maZa d dlbmcZcmdZdmeZemfZfmgZgmhZhmiZimjZjmkZkmlZlmmZmmnZnmoZompZp d dl mqZqmrZrmsZsmtZtmuZumvZv d dl mwZw d dlxmyZy d dlzm{Z{m|Z|m}Z}m~Z~mZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZmZ d dlmZ d dlmZ d dlmZ  e            Ze                    ded                   Ze                    d          Z[[dZg dZdS )    )annotationsrestructuredtext)numpypytzdateutilz: Nz(Unable to import required dependencies:

)is_numpy_dev)	hashtablelibtslibzC extension: z not built. If you want to import pandas from the source directory, you may need to run 'python setup.py build_ext --force' to build the C extensions first.)
get_option
set_optionreset_optiondescribe_optionoption_contextoptions)8
ArrowDtype	Int8Dtype
Int16Dtype
Int32Dtype
Int64Dtype
UInt8DtypeUInt16DtypeUInt32DtypeUInt64DtypeFloat32DtypeFloat64DtypeCategoricalDtypePeriodDtypeIntervalDtypeDatetimeTZDtypeStringDtypeBooleanDtypeNAisnaisnullnotnanotnullIndexCategoricalIndex
RangeIndex
MultiIndexIntervalIndexTimedeltaIndexDatetimeIndexPeriodIndex
IndexSliceNaTPeriodperiod_range	Timedeltatimedelta_range	Timestamp
date_rangebdate_rangeIntervalinterval_range
DateOffset
to_numericto_datetimeto_timedeltaFlagsGrouper	factorizeuniquevalue_countsNamedAggarrayCategoricalset_eng_float_formatSeries	DataFrame)SparseDtype)
infer_freq)offsets)eval)concatlreshapemeltwide_to_longmerge
merge_asofmerge_orderedcrosstabpivotpivot_tableget_dummiesfrom_dummiescutqcut)apiarrayserrorsioplottingtseries)testing)show_versions)	ExcelFileExcelWriter
read_excelread_csvread_fwf
read_tableread_pickle	to_pickleHDFStoreread_hdfread_sqlread_sql_queryread_sql_tableread_clipboardread_parquetread_orcread_featherread_gbq	read_htmlread_xml	read_json
read_stataread_sas	read_spss)json_normalize)test)get_versionszclosest-tagversionzfull-revisionida  
pandas - a powerful data analysis and manipulation library for Python
=====================================================================

**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.

Main Features
-------------
Here are just a few of the things that pandas does well:

  - Easy handling of missing data in floating point as well as non-floating
    point data.
  - Size mutability: columns can be inserted and deleted from DataFrame and
    higher dimensional objects
  - Automatic and explicit data alignment: objects can be explicitly aligned
    to a set of labels, or the user can simply ignore the labels and let
    `Series`, `DataFrame`, etc. automatically align the data for you in
    computations.
  - Powerful, flexible group by functionality to perform split-apply-combine
    operations on data sets, for both aggregating and transforming data.
  - Make it easy to convert ragged, differently-indexed data in other Python
    and NumPy data structures into DataFrame objects.
  - Intelligent label-based slicing, fancy indexing, and subsetting of large
    data sets.
  - Intuitive merging and joining data sets.
  - Flexible reshaping and pivoting of data sets.
  - Hierarchical labeling of axes (possible to have multiple labels per tick).
  - Robust IO tools for loading data from flat files (CSV and delimited),
    Excel files, databases, and saving/loading data from the ultrafast HDF5
    format.
  - Time series-specific functionality: date range generation and frequency
    conversion, moving window statistics, date shifting and lagging.
)rr   r#   rG   r   r*   rJ   r<   r/   r!   re   rf   r@   r   r   rA   rm   r)   r1   r   r   r   r   r:   r    r-   r,   r$   r2   rE   r3   r   r0   r+   rI   rK   r"   r5   r.   r7   r   r   r   r   r]   rF   r^   r9   rO   rV   r[   r8   r   r_   rN   rB   rY   rZ   r   rL   r;   r`   r%   r&   r}   rP   rQ   rS   rT   rU   r'   r(   rM   r   r   r4   rW   rX   ra   r\   rr   rh   rg   ru   ri   rv   rn   rw   ry   rt   rs   rk   r{   r|   ro   rp   rq   rz   rj   rx   r   rH   r   rd   r~   rc   r6   r>   r=   rl   r?   rb   rC   rD   rR   )
__future__r   __docformat___hard_dependencies_missing_dependencies_dependency
__import__ImportError_eappendjoinpandas.compatr	   _is_numpy_devpandas._libsr
   
_hashtabler   _libr   _tslib_errname_modulepandas._configr   r   r   r   r   r   pandas.core.config_initpandaspandas.core.apir   r   r   r   r   r   r   r   r   r   r   r   r   r    r!   r"   r#   r$   r%   r&   r'   r(   r)   r*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r6   r7   r8   r9   r:   r;   r<   r=   r>   r?   r@   rA   rB   rC   rD   rE   rF   rG   rH   rI   rJ   pandas.core.arrays.sparserK   pandas.tseries.apirL   pandas.tseriesrM   pandas.core.computation.apirN   pandas.core.reshape.apirO   rP   rQ   rR   rS   rT   rU   rV   rW   rX   rY   rZ   r[   r\   r]   r^   r_   r`   ra   rb   rc   pandas.util._print_versionsrd   pandas.io.apire   rf   rg   rh   ri   rj   rk   rl   rm   rn   ro   rp   rq   rr   rs   rt   ru   rv   rw   rx   ry   rz   r{   r|   pandas.io.json._normalizer}   pandas.util._testerr~   pandas._versionr   vget__version____git_version____doc____all__     K/var/www/html/t/fyr/venv311/lib/python3.11/site-packages/pandas/__init__.py<module>r      s   " " " " " "" 3  % = =K=
; = = =$$%;%;r%;%;<<<<<<<<=  
+3dii@U6V6VV   %: 8 7 7 7 7 7
!RRRRRRRRRR 	jj    iG
+	O 	O 	O 	O  	                   ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?B 2 1 1 1 1 1 ) ) ) ) ) ) " " " " " " , , , , , ,                               " > = = = = = = = = = = = = = = =       5 5 5 5 5 5                                                   B 5 4 4 4 4 4 $ $ $ $ $ $ ) ( ( ( ( (LNNeeM1Y<00%%)**!&Vs s ss,   AAA7
B B&
B!!B&