
    d                    v    d dl mZ d dlZd dlmZmZ d dlmZ d dl	m
Z
mZmZmZ d dlmZ 	 dddZddZddZdS )    )annotationsN)Dict
IndexLabelremove_na_arraylike)	DataFrame
MultiIndexSeriesconcat)unpack_single_str_listhistdatar   kindstrreturnDict[str, DataFrame | Series]c                     |dk    rdndt           j        t                    sJ  fd j        j                 D             S )ax  
    Create data for iteration given `by` is assigned or not, and it is only
    used in both hist and boxplot.

    If `by` is assigned, return a dictionary of DataFrames in which the key of
    dictionary is the values in groups.
    If `by` is not assigned, return input as is, and this preserves current
    status of iter_data.

    Parameters
    ----------
    data : reformatted grouped data from `_compute_plot_data` method.
    kind : str, plot kind. This function is only used for `hist` and `box` plots.

    Returns
    -------
    iter_data : DataFrame or Dictionary of DataFrames

    Examples
    --------
    If `by` is assigned:

    >>> import numpy as np
    >>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
    >>> mi = MultiIndex.from_tuples(tuples)
    >>> value = [[1, 3, np.nan, np.nan],
    ...          [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
    >>> data = DataFrame(value, columns=mi)
    >>> create_iter_data_given_by(data)
    {'h1':     h1
         a    b
    0  1.0  3.0
    1  3.0  4.0
    2  NaN  NaN, 'h2':     h2
         a    b
    0  NaN  NaN
    1  NaN  NaN
    2  5.0  6.0}
    r   r      c                l    i | ]0}|j         d d j                                      |k    f         1S )N)loccolumnsget_level_values).0colr   levels     _/var/www/html/t/fyr/venv311/lib/python3.11/site-packages/pandas/plotting/_matplotlib/groupby.py
<dictcomp>z-create_iter_data_given_by.<locals>.<dictcomp>M   sP        	TXaaa66u==DDE      )
isinstancer   r	   levels)r   r   r   s   ` @r   create_iter_data_given_byr!      sp    ^ v~~ dlJ/////    <&u-   r   byr   colsc                    t          |          }|                     |          }g }|D ]@\  }}t          j        |g|g          }||         }	||	_        |                    |	           At          |d          } | S )ai  
    Internal function to group data, and reassign multiindex column names onto the
    result in order to let grouped data be used in _compute_plot_data method.

    Parameters
    ----------
    data : Original DataFrame to plot
    by : grouped `by` parameter selected by users
    cols : columns of data set (excluding columns used in `by`)

    Returns
    -------
    Output is the reconstructed DataFrame with MultiIndex columns. The first level
    of MI is unique values of groups, and second level of MI is the columns
    selected by users.

    Examples
    --------
    >>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
    >>> df = DataFrame(d)
    >>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
       h1      h2
       a     b     a     b
    0  1.0   3.0   NaN   NaN
    1  3.0   4.0   NaN   NaN
    2  NaN   NaN   5.0   6.0
    r   )axis)r   groupbyr	   from_productr   appendr   )
r   r"   r#   by_modifiedgrouped	data_listkeygroupr   	sub_groups
             r   reconstruct_data_with_byr/   S   s    < ),,Kll;''GI $ $
U )C5$-88$K	#	####)!$$$DKr   ySeries | np.ndarrayIndexLabel | Nonec                    |@t          | j                  dk    r(t          j        d | j        D                       j        S t          |           S )zInternal function to reformat y given `by` is applied or not for hist plot.

    If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
    will take place and input y is multi-dimensional array.
    Nr   c                ,    g | ]}t          |          S  r   )r   r   s     r   
<listcomp>z,reformat_hist_y_given_by.<locals>.<listcomp>   s!    AAAc,S11AAAr   )lenshapenparrayTr   )r0   r"   s     r   reformat_hist_y_given_byr<      sM     
~#ag,,**xAAQSAAABBDDq!!!r   )r   )r   r   r   r   r   r   )r   r   r"   r   r#   r   r   r   )r0   r1   r"   r2   r   r1   )
__future__r   numpyr9   pandas._typingr   r   pandas.core.dtypes.missingr   pandasr   r	   r
   r    pandas.plotting._matplotlib.miscr   r!   r/   r<   r5   r   r   <module>rC      s   " " " " " "           
 ; : : : : :            D C C C C C "(: : : : :z+ + + +\
" 
" 
" 
" 
" 
"r   